Adult-Specific Electrical Silencing of Pacemaker Neurons Uncouples Molecular Clock from Circadian Outputs

نویسندگان

  • Ana Depetris-Chauvin
  • Jimena Berni
  • Ezequiel J. Aranovich
  • Nara I. Muraro
  • Esteban J. Beckwith
  • María Fernanda Ceriani
چکیده

BACKGROUND Circadian rhythms regulate physiology and behavior through transcriptional feedback loops of clock genes running within specific pacemaker cells. In Drosophila, molecular oscillations in the small ventral lateral neurons (sLNvs) command rhythmic behavior under free-running conditions releasing the neuropeptide PIGMENT DISPERSING FACTOR (PDF) in a circadian fashion. Electrical activity in the sLNvs is also required for behavioral rhythmicity. Yet, how temporal information is transduced into behavior remains unclear. RESULTS Here we developed a new tool for temporal control of gene expression to obtain adult-restricted electrical silencing of the PDF circuit, which led to reversible behavioral arrhythmicity. Remarkably, PERIOD (PER) oscillations during the silenced phase remained unaltered, indicating that arrhythmicity is a direct consequence of the silenced activity. Accordingly, circadian axonal remodeling and PDF accumulation were severely affected during the silenced phase. CONCLUSIONS Although electrical activity of the sLNvs is not a clock component, it coordinates circuit outputs leading to rhythmic behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical Silencing of Drosophila Pacemaker Neurons Stops the Free-Running Circadian Clock

Electrical silencing of Drosophila circadian pacemaker neurons through targeted expression of K+ channels causes severe deficits in free-running circadian locomotor rhythmicity in complete darkness. Pacemaker electrical silencing also stops the free-running oscillation of PERIOD (PER) and TIMELESS (TIM) proteins that constitutes the core of the cell-autonomous molecular clock. In contrast, elec...

متن کامل

Circadian Pacemaker Neurons Transmit and Modulate Visual Information to Control a Rapid Behavioral Response

Circadian pacemaker neurons contain a molecular clock that oscillates with a period of approximately 24 hr, controlling circadian rhythms of behavior. Pacemaker neurons respond to visual system inputs for clock resetting, but, unlike other neurons, have not been reported to transmit rapid signals to their targets. Here we show that pacemaker neurons are required to mediate a rapid behavior. The...

متن کامل

Single-cell Resolution Fluorescence Live Imaging of Drosophila Circadian Clocks in Larval Brain Culture.

The circadian pacemaker circuit orchestrates rhythmic behavioral and physiological outputs coordinated with environmental cues, such as day/night cycles. The molecular clock within each pacemaker neuron generates circadian rhythms in gene expression, which underlie the rhythmic neuronal functions essential to the operation of the circuit. Investigation of the properties of the individual molecu...

متن کامل

Effect of Mefloquine, a Gap Junction Blocker, on Circadian Period2 Gene Oscillation in the Mouse Suprachiasmatic Nucleus Ex Vivo

BACKGROUND In mammals, the master circadian pacemaker is localized in an area of the ventral hypothalamus known as the suprachiasmatic nucleus (SCN). Previous studies have shown that pacemaker neurons in the SCN are highly coupled to one another, and this coupling is crucial for intrinsic self-sustainability of the SCN central clock, which is distinguished from peripheral oscillators. One plaus...

متن کامل

Electrical Activity Can Impose Time of Day on the Circadian Transcriptome of Pacemaker Neurons

BACKGROUND Circadian (∼24 hr) rhythms offer one of the best examples of how gene expression is tied to behavior. Circadian pacemaker neurons contain molecular clocks that control 24 hr rhythms in gene expression that in turn regulate electrical activity rhythms to control behavior. RESULTS Here we demonstrate the inverse relationship: there are broad transcriptional changes in Drosophila cloc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011